Polytechnic University scientists have developed a way to reduce the side effects of cancer treatment.

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

SPbPU specialists have improved the effectiveness of targeted delivery of anticancer drugs to tumors. The scientists discovered that by coating drug nanoparticles with a mixture of substances that make up a third of the brain, they can precisely release the active substance in cancer cells with minimal effect on healthy tissue. The results are published in the Journal of Controlled Release. RIA Novosti.

Chemotherapy side effects—hair loss, nausea, and fatigue—occur because toxic drugs attack not only the tumor but also healthy cells. The drugs circulate through the bloodstream, even reaching unaffected tissue.

This behavior of drugs in the patient's body also reduces the overall effectiveness of treatment: only a small portion of the administered drug reaches its target. To achieve targeted drug delivery to the tumor site, it is possible to use nanocarriers—"containers" that shield the active substance from the external environment and can be controlled externally, noted Sergei Shipilovskikh, a leading researcher and associate professor at the Higher School of Biomedical Systems and Technologies at SPbPU.

These "containers" can be tagged with tags that are specific only to cancer cells, but not to healthy ones. Scientists from SPbPU and their colleagues from ITMO University discovered that applying a mixture of biological substances to the surface of nanoparticles reduces the "recognizability" of the nanocontainer to healthy cells and delivers the active substance precisely to the target.

The scientists used lecithin—a mixture of natural fats, fatty acids, and other components—to coat the nanocontainers. The human brain contains 30 percent lecithin, so the drug won't cause rejection or an immune reaction.

According to our results, approximately 80 percent of the active substance is released from the nanocontainer, which consists of silicon dioxide and is coated with a lipid shell of lecithin, specifically in cancer cells. Moreover, the effect is prolonged: the drug is not released completely at once, but gradually, exerting a cumulative effect within the tumor space, explained Sergey Shipilovskikh.

The researcher also explained that using the active ingredient in nanoparticles, rather than in its free form, is also advantageous in terms of storage conditions. In a nanocontainer, the drug is protected from atmospheric oxygen, light, and other external influences.

According to the scientists, the accumulation of nanoparticles in tumors is due to both the structural features of the lipid membrane and the fact that tumor cells are capable of more active metabolism than healthy cells. In the future, the scientists plan to elucidate the detailed mechanism of lecithin-coated nanoparticle uptake by cells and continue developing a universal system for delivering anticancer drugs to various cancer cell types.

The study was carried out within the framework of the federal program "Priority 2030".

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

.

From concept to implementation: PoliShkola opens its fourth educational season

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

Educational and motivational program PoliSchool The program has begun its fourth season, which is entirely dedicated to preparing a talent pool for the implementation of key scientific and technological areas and strategic goals in the field of engineering education and personnel development at the Polytechnic University within the framework of the Priority 2030 program.

The program was opened by Vice-Rector for Human Resources Maria Vrublevskaya and Head of the Office of Technological Leadership Oleg Rozhdestvensky.

It's already clear that this year's intake is very active and results-oriented. I'm confident that excellent projects will advance to the finals, which will strengthen our key scientific and technological areas. The teams' potential will be boosted, and the students will have the opportunity to take the next step in their careers," noted Maria Vrublevskaya.

Project participants will attend lectures on product thinking, working with technology markets, budgeting, team building, negotiating, working with intellectual property (IP), and project presentations. Throughout the course, teams will complete business quests that will teach them how to work in situations of uncertainty and overcome challenges in implementing ideas. The final stage of the course will be a well-developed grant application for the Priority 2030 program.

Eighteen teams entered the PoliSchool, 10 of which will advance to the finals and present their ideas to the Technology Leadership Council.

"Our country currently needs the most advanced technological solutions. Polytechnic University is focusing on three areas where it can deliver the greatest benefit: digital engineering, materials and manufacturing, and artificial intelligence," said Oleg Rozhdestvensky. "These priorities will remain in place for a long time, and young teams trained to lead their own scientific and technological projects, thanks in part to PolySchool, can become reliable and effective team members in SPbPU's key scientific and technological areas."

Experts and practitioners from leading Russian universities and companies will share their experiences and support the "PolySchool" students. All participants who successfully complete the "PolySchool" will receive certificates of advanced training.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

.

Alliance of Education and Industry: SPbPU Discusses Training Engineers of the Future

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

Priority 2030, SPbPU, Peter the Great Polytechnic University, engineers of the future, engineering training, education and industry alliance, cybersecurity, technological leadership, Russian universities, business-university collaboration, digital transformation, industrial companies, Polytechnic University.

The roundtable was moderated by Lyudmila Pankova, Vice-Rector for Academic Affairs at SPbPU, who noted the event's significant significance: "Today, when the federal educational agenda is changing and interaction with industry is becoming a key development vector, the importance of such meetings is difficult to overestimate. We have the opportunity to openly discuss the challenges we face in our interactions and jointly find solutions. We have made significant progress in building new formats of cooperation with industrial partners, but we are also well aware of how much remains to be done."

The discussion was attended by executives and specialists from companies such as TGC-1 PJSC, the Kurchatov Institute National Research Center – Prometey Central Research Institute of Structural Materials, the Obukhov Plant JSC of the Almaz-Antey Air Defense Concern, and others. Participants discussed current issues of collaboration between businesses and universities to train a new generation of engineers capable of ensuring the country's technological sovereignty.

Eduard Lisitsky, Deputy Managing Director for Development and Asset Management at PJSC TGC-1, outlined a key need in the energy industry: "Today, we are facing a talent shortage amidst a large-scale digital transformation. The active automation of all processes is radically changing the profile of the required specialist. We need people with IT competencies, not just at the user level, but at the level of creating and managing complex systems. These skills are the new key to the professional effectiveness of our specialists and the competitiveness of our company."

Olga Fomina, First Deputy Director General for Research at the Kurchatov Institute National Research Center – Prometheus Central Research Institute of St. Petersburg Materials and Materials, spoke about the implementation of a systematic approach to personnel training. "Our department at SPbPU is not just a 40-year-old institution, but a living example of successful integration. The established "education-science-industry" chain is proving its effectiveness: it allows students to gain invaluable experience solving real-world problems, ensuring their quick and easy adaptation when applying for a job at our company. Our next shared goal is to strengthen interdisciplinary project work and launch such projects as final qualifying theses," she said.

Kirill Martinson, Advisor to the Director of the Research Institute of Mechanical Engineering at JSC NPO SZRC Almaz-Antey Air Defense Concern – Obukhov Plant, commented on the importance of differentiating approaches to engineering training to achieve technological leadership: "A good engineer is not necessarily a scientist, and a good scientist is not necessarily a good engineer. The educational process at a university should include both research and practice-oriented components."

All participants agreed on the need to further strengthen the "alliance of the strong"—a strategic partnership between higher education and the real economy—to address national challenges.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

.

Creative and technical universities from Russia discussed the synergy of art and technology at the Polytechnic University.

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

For three days, the Technopolis Polytech Research Building celebrated high art—music, ballet, and theater—as it hosted a networking project-analytical session, "Creative Universities in Technological Leadership: Significance and Role in Achieving Strategic Goals for the State and Industry."

Teams from creative and technical universities discussed with experts from the Russian Ministry of Education and Science, the Ministry of Culture, and the Social Center how to combine art, engineering, and technology so that the synergistic effect becomes a building block in the foundation of the country's strategic leadership.

The session was attended by representatives of five creative universities under the jurisdiction of the Russian Ministry of Culture, which received grants under the Priority-2030 program: the All-Russian State Institute of Cinematography named after S. A. Gerasimov (VGIK), the Gnessin Russian Academy of Music (RAM), the Boris Shchukin Theatre Institute at the Vakhtangov State Academic Theatre (B. Shchukin Theatre Institute), the Vaganova Academy of Russian Ballet (ARB), and the Russian Institute of Theatre Arts (GITIS). The Kazan State Institute of Culture (KazGIK), a candidate for participation in the program, was also represented.

The technical universities represented were SPbPU, MISIS University of Science and Technology, and St. Petersburg State University of Industrial Technology and Design.

On the first day of the session, Svetlana Ermakova, Director of the Department of Regional Policy, Education, and Project Management at the Russian Ministry of Culture, addressed the participants with a welcoming address. She noted the importance of collaboration between creative and engineering universities and industry in implementing the Priority 2030 program.

"From this session, I expect very clear, understandable solutions for the interaction between creative universities and production," said Svetlana Ermakova. "We need to find solutions in multimedia, film production, and other sectors that will allow us to interact with the industry at the highest level, just as our friends, partners, and colleagues do. We can definitely do this, but only if we work together. And here we need to think about consortiums and the opportunities that unification offers."

"There are a huge number of technical and engineering challenges in culture and creativity that need to be addressed, and they can likely be addressed with the help of partners, scientific and technical organizations, and universities," noted Konstantin Bogonosov, acting director of the Sociocenter, in his speech.

Maria Vrublevskaya, Vice-Rector for Human Resources at SPbPU and an expert at the Sociocenter, welcomed the guests on behalf of the Polytechnic University: "Our mission is to become a team. We, with our technological expertise, capabilities, and experience, and you, with your wonderful humanities and creative approach, can enrich engineering thought. This symbiosis will allow us to be considered the number one country in virtually every industry. We invited to the session people who have created technologies with their own hands, and who also recognize the importance of soft skills and understand that a technology team must be carefully equipped with talents who can shape technologies in a way that makes them absolutely competitive and interesting for society and the world."

On the first day, at the plenary session, speakers described how the target models of creative universities have changed since their participation in the Priority 2030 program, what strategic goals have been achieved, and what constitutes qualitative indicators of change. Then, they worked in groups.

The second day began with presentations from representatives of the Polytechnic University. Alexey Borovkov, Director of the SPbPU School of Digital Engineering and Chief Designer for the Scientific and Technological Program, spoke about the potential of digital engineering in solving problems in culture, sports, and the arts.

Sergey Salkutsan, Director of the Center for Continuing Professional Education at the Advanced Engineering School "Digital Engineering," shared his experience implementing joint projects between creative and engineering universities.

The "Polytech Metacampus" project, recognized as the best practice of the "Priority 2030" program, was presented by Yegor Melekhin, an assistant engineer at the SPbPU Institute of Civil Engineering.

The third day of the session was devoted to research and development at creative universities in the context of technological leadership. Scientific approaches to the digital transformation of culture and the possibility of creating an integrated network platform for creative and technical universities were also discussed.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

.

Dmitry Tikhonov on the development of different levels of education to ensure technological sovereignty

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

Vice-Rector for Continuing and Pre-University Education Dmitry Tikhonov was featured in the seventh episode of the video digest "Polytechnic as a Priority."

Dmitry Vladimirovich spoke about the expansion of the range of educational programs and projects related to the university's key scientific and technological areas. According to the Vice Rector, the creation of leading educational products and the development of human capital at various educational levels are essential for ensuring technological leadership.

This video digest will tell you about the changes that will occur in the field of supplementary and pre-university education in the near future.

Informational video digests prepared by the SPbPU Office of Technological Leadership highlight the university's most important scientific and technical projects and areas participating in the Priority 2030 program. These videos are designed to help you understand the program, learn about the projects receiving funding, and follow their implementation.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

.

Anatoly Popovich: the task is to develop engineering education based on digital technologies

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

The hero of the sixth issue of the video digest “Polytech in Priority” is the chief designer, head of the key scientific and technological direction “New Materials, Technologies, Production”, director of the Institute of Mechanical Engineering, Materials and Transport of SPbPU Anatoly Popovich.

In the new issue, Anatoly Anatolyevich spoke about the priority tasks that the Institute of Mechanical Engineering, Materials and Transport solves to achieve the goals of technological leadership of the country. As an example, Anatoly Popovich named the achievements of IMMiT in the field of additive technologies, thanks to which the institute occupies a leading position not only in Russia, but also in the world.

Information video digests prepared by the SPbPU Office of Technological Leadership tell about the most important scientific and technical projects and areas of the university that participate in the Priority-2030 program. These videos are created to help understand the essence of the program, learn about the projects receiving funding, and follow how they are being implemented.

Please note: This information is raw content obtained directly from the source of the information. It is an accurate report of what the source claims and does not necessarily reflect the position of MIL-OSI or its clients.

.

Polytechnic University creates information system for safe operation of power equipment

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

Scientists from the Polytechnic University have developed an innovative hybrid algorithm to improve the operation of power equipment. The new system combines digital twin technologies with dynamic self-parameterization and AI. This allows predicting changes in the operation of complex power equipment, preventing emergency situations, and increasing the marginal income of the generating enterprise.

Reliable monitoring and forecasting of the state of complex power equipment is one of the key tasks for the Russian energy sector. This is directly related to ensuring national energy security and meets the goals Energy Strategy of the Russian Federation until 2050, which involves the implementation of digital twins and predictive analytics systems based on AI. Despite the widespread development of global research in this area, foreign solutions poorly cover the specifics of Russian thermal power plants, which are distinguished by the diversity of equipment, the complexity and variety of modes of combined production of thermal and electrical energy, etc.

Currently, Russian predictive analytics systems are based primarily on the analysis of trends in key parameter changes and use classic neural models built on statistical information from automated process control system (APCS) devices. The widespread implementation of this approach in the domestic energy sector is limited by a number of reasons. These include the low degree of automation of power equipment by APCS devices, the unreliability of some signals, and the introduction of new domestic energy equipment for which a pool of necessary statistical information on operation in various modes has not yet been collected.

The development of the SPbPU research team in the field of predictive analytics is intended to forecast degradation and defects of power equipment. At the first stage, a digital model of the station is created, data on the operation of the thermal power plant from standard devices is loaded into specialized software. Then, information from standard devices of the automated process control system is received in real time. After checking for adequacy, the model issues recommendations on the optimal management of the mode.

Using machine learning methods, our development automatically takes into account changes in the physical characteristics of key equipment units, occurring, for example, due to natural wear. The model is self-parameterized and can fill in gaps in the data obtained, for example, about those station units where it is impossible to install a monitoring sensor, and eliminate inaccuracies in existing measurements. Having received a reliable digital copy of the most complex power equipment, we can conduct an in-depth analysis of the station's operation and predict the occurrence of defects in the future, as well as study data on the complex influence of many factors on technical processes. Until now, it was impossible to obtain such information either theoretically or practically, – noted the project manager, associate professor of the Higher School of Nuclear and Thermal Energy of SPbPU Irina Anikina.

This task is especially relevant for new domestic gas turbine units, for which a large array of statistical information has not yet been collected. A pilot prototype of the system has been tested at some stations in the North-West region. Scientists believe that it will ultimately be possible to increase the marginal income of the thermal power plant by 7-8% by selecting optimal operating modes taking into account the actual state of the equipment.

In addition, new hybrid algorithms will reduce the number of unplanned repairs due to abnormal equipment behavior and optimize the repair schedule. This is important, since losses in case of accidents can vary from several million to billions depending on the capacity, cost of generating equipment and complexity of repairs, features of the sales activities of the thermal power plant, etc.

The team’s plans include further development of the system, its adaptation for other types of generating equipment and scaling to other energy industry enterprises.

The research work is carried out with the support of the SPbPU Development Program for 2025–2036 as part of the implementation of the Priority 2030 program (the national project Youth and Children).

Please note: This information is raw content obtained directly from the source of the information. It is an accurate report of what the source claims and does not necessarily reflect the position of MIL-OSI or its clients.

.

Maxim Pasholikov: “The PoliKapital system will allow students to create an individual digital portfolio”

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

The hero of the fifth issue of the video digest “Polytech in Priority” is the Vice-Rector for Information, Youth Policy and Security of SPbPU Maxim Pasholikov.

Maxim Aleksandrovich told what tasks the university structures that deal with youth policy face. What is the information and analytical system "PolyCapital"? How will the triad be built – employer-university-student? And why is it important to form a personal portfolio of each polytechnic student?

The series of informational video digests prepared by specialists of the Office of Technology Leadership is aimed at popularizing key scientific and technical areas and projects that receive support from the Priority 2030 program. Thanks to this, employees and interested people receive comprehensive information about the program areas, funded projects and their implementation.

Please note: This information is raw content obtained directly from the source of the information. It is an accurate report of what the source claims and does not necessarily reflect the position of MIL-OSI or its clients.

.

Lyudmila Pankova: Don't follow trends in educational policy, but shape them

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

How to achieve technological leadership in education? This is what the fourth video digest "Polytech in Priority" and its host, Vice-Rector for Educational Activities and Head of the "Transformation of Engineering Education" direction Lyudmila Pankova, tells about.

You will learn how the content of educational programs is currently changing at Polytechnic University, what is being done to fully reveal the talents and abilities of students, as well as to increase the motivation and career growth of teachers. In addition, Lyudmila Pankova spoke about new formats of interaction with industrial partners and shared her vision of the future of the educational mission of Polytechnic University.

Please note: This information is raw content obtained directly from the source of the information. It is an accurate report of what the source claims and does not necessarily reflect the position of MIL-OSI or its clients.

.

Partnership between SPbPU and the Multicenter: support for veterans of the SVO and involvement in solving problems of technological leadership

Translation. Region: Russian Federal

Source: Peter the Great St. Petersburg Polytechnic University –

An important disclaimer is at the bottom of this article.

Peter the Great St. Petersburg Polytechnic University was visited by a group of veterans of the special military operation, undergoing rehabilitation and mastering new professions at the State Autonomous Non-Standard Professional Educational Institution of the Leningrad Region "Multi-Center for Social and Labor Integration".

The visit was organized by the Directorate of Continuing Education and Industry Partnership of SPbPU together with the Institute of Mechanical Engineering, Materials and Transport for the social and labor integration of veterans of the SVO, the development of partnership and the formation of a system of continuous education aimed at solving the problems of technological leadership of the country. This work is carried out by the university, including within the framework of the federal program "Priority-2030" at the expense of internal resources allocated for the implementation of the projects "Development and implementation of additional professional education programs for participants and veterans of the SVO taking into account the regional needs of the economy" and "Organization of a system of professional counseling and individual educational trajectories for veterans of the SVO, as well as training teachers and mentors to work with the target audience."

Already during the pilot implementation, IMMiT teachers will take part in training veterans of the SVO according to an adapted advanced training program based at the Multicenter.

The guests got acquainted with the laboratories, educational and production complexes and engineering sites. The prospects for launching adapted educational programs, forming a mentoring system and professional consulting were discussed. The visit was a continuation of the university's systematic work on creating applied programs for target categories of students.

The visit also acquired special significance in the context of preparations for the conclusion of a strategic partnership agreement between Peter the Great St. Petersburg Polytechnic University and the Multicenter for Social and Labor Integration. The document has been developed and agreed upon by the parties and will be signed in the near future. The agreement will form the basis for systematic joint work. Work is already underway to create a joint educational space on the basis of the Multicenter for the implementation of training programs in the management and maintenance of numerically controlled machines.

The Polytechnic University consistently develops areas related to the training and retraining of participants and veterans of the SVO, including the launch of new programs for advanced training and professional retraining focused on the real needs of regional economies. One of the key partners in this process is the Multicenter, an institution that applies comprehensive approaches to labor rehabilitation and social support. The Multicenter provides professional training, giving veterans of the SVO the opportunity to obtain applied technical competencies and master a new profession, and the Polytechnic offers paths for further development – completing programs of secondary vocational and higher education, advanced training and professional retraining.

Such interaction between the Multicenter and SPbPU is especially significant in the field of engineering education: it allows for the development of end-to-end training trajectories – from mastering blue-collar jobs to obtaining engineering qualifications, which corresponds to the tasks of the country’s technological development.

The meeting discussed mechanisms for long-term cooperation: launching adapted programs, organizing mentoring, training teachers and tutors to work with the target audience.

Deputy Director for Educational and Industrial Work at the Multicenter for Social and Labor Integration Ekaterina Stepanova emphasized: We are grateful to the Polytechnic University for its high level of openness and attention to those who are returning to civilian life. The University demonstrates not only technological readiness, but also humanitarian involvement, which makes our partnership truly valuable. We share a systemic approach, which creates not individual courses, but an entire adapted educational space that meets the capabilities of specific people and the needs of the economy.

Cooperation with the Multicenter allows us to build practice-oriented trajectories – from professional consulting to qualification training. The first courses, developed specifically taking into account the conditions of returning to peaceful professional activity, will start in the near future. We see that the demand for such programs will only grow, especially in the context of technological leadership tasks. The enormous practical experience that the Multicenter has accumulated over the years of its activity is certainly very important and valuable for the Polytechnic University – both in methodological and organizational terms, – noted Dmitry Tikhonov, Vice-Rector for Continuing and Pre-University Education at SPbPU.

The participants of the visit – students of the Multicenter, undergoing training in a number of in-demand technical areas – highly appreciated the educational and technological base of the Polytechnic University, showed a keen interest in the engineering infrastructure of the university and the possibilities of further education.

One of the participants of the visit noted: Everything is thought out to the smallest detail: modern equipment and an attentive approach to students. It is especially valuable that here they do not just meet, but teach in-demand professions that are important for the country. We came not just to look, but for the opportunity to develop in the profession and build our future.

The visit of the representatives of the Multicenter and veterans of the SVO became an important stage in the development of an integrated model of interaction – from social support and mentoring to engineering training and employment in industrial enterprises.

Please note: This information is raw content obtained directly from the source of the information. It is an accurate report of what the source claims and does not necessarily reflect the position of MIL-OSI or its clients.

.