A permanent exhibition of fossilized lake inhabitants of the unique freshwater biota of the Cretaceous period has opened at NSU.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

The permanent exhibition "Mesozoic: Continental Flora and Fauna" has been expanded with a new display case featuring specimens of Cretaceous lake fauna—remains of bony fish, insects, and crustaceans. These specimens were collected by staff from the "Evolution of the Earth" Scientific and Educational Center. Faculty of Geology and Geophysics of Novosibirsk State University and the A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG) of the Siberian Branch of the Russian Academy of Sciences during expeditions to the Trans-Baikal Territory. The exhibition also includes finds from China, provided by Igor Kosenko, Associate Professor of the Department of Historical Geology and Paleontology at NSU's GGG. The uniqueness of all the specimens lies in their excellent preservation—the structure of these prehistoric creatures can be seen in exquisite detail, even with the naked eye.

The new display case presents animals belonging to the Jehol fauna. These are the fossil remains of feathered dinosaurs, birds, mammals, and plants, found in large numbers in the Lower Cretaceous deposits of northeastern China. Such localities are called lagerstätten. This is a special type of fossil burial that preserves not only the hard parts of skeletal forms but also impressions of soft tissue. Lower Cretaceous deposits containing the remains of the Jehol biota are very widespread—from Transbaikalia, Russia, in the north and Japan in the east, to Guangdong Province, China, in the south and the Xinjiang Uyghur Autonomous Region of China. Deposits characterized by typical representatives of the Jehol biota are widespread in Transbaikalia. These include the remains of crustaceans (Eosestheria conchostracans), insects (Ephemeropsis mayfly larvae), and bony fishes (Lycoptera). All of these prehistoric lake animals are on display in a new display case, said Vsevolod Efremenko, an engineer at the Evolution of the Earth Research Center and a junior researcher at the Institute of Petroleum Geology and Geophysics (IPGG SB RAS).

The Jehol Biota is a distinct lake fauna and flora characteristic of Asia. It encompasses China, Mongolia, the Transbaikal Territory, and parts of Korea. This fauna has been known for some time and was first described from finds made in the Transbaikal Territory. However, it gained notoriety and its current name after the discovery of feathered dinosaur footprints in China. Scientists from the Novosibirsk State University Geological and Geophysical Institute and the Institute of Petroleum Geology and Geophysics (IPGG SB RAS) have been studying the Jehol Biota in the Transbaikal Territory since 2021. An expeditionary team for paleontological research in the Transbaikal Territory was formed four times—in 2021, 2022, 2024, and 2025. The materials presented in the exhibition were collected during the 2021 and 2024 expeditions. A new expedition is planned for 2026.

The new display case features specimens of Jehol lake fauna from Transbaikal and China. The most striking, of course, are the fish. Among them is an ancient paddlefish—a sturgeon-like fish called Protopsephurus, which appeared in the Mesozoic era and spread across the planet. Also on display is a remarkably well-preserved bony fish called Lycoptera, quite common in the Mesozoic era. The specimen clearly displays scales that have retained their original position. For this reason, even the lateral line—a sensory organ that runs along the body—is visible on the fish's body. It senses the movement and vibrations of the water, helping the fish navigate, navigate obstacles, move in a school, and avoid predators.

Fishes of the genus Lycoptera were widespread across Asia approximately 120 million years ago, and paleontologists encounter such finds quite frequently. However, many specimens often have scales that are displaced and the lateral line is destroyed. Here, however, it is clearly visible. This means that the scales remained in place from the moment of death until burial, and the fish itself was preserved in ideal conditions. Thanks to these conditions, another specimen was also perfectly preserved—the largest fish skeleton on display. This is an Irenichthys, with a body length of approximately 15-18 cm. This is the largest complete skeleton of this species we have found—these fish typically do not grow to such a size. All the bones of the skeleton and scales are clearly visible, and the structure of the skull is clearly visible. A detailed description of the entire species could be compiled from this specimen. This specimen, like the previous one, was preserved in ideal conditions, which is why it is so beautifully preserved. But other fish of the same species, whose imprints are on display, were less fortunate—they are slightly deformed, their scales damaged. "It's likely that optimal conditions were periodically disrupted in the places where they were preserved," explained Vsevolod Efremenko.

In addition to Cretaceous fish, the exhibition also features crustaceans and insects: shield bugs, mayfly larvae, and beetles. They are as well preserved as the fish—all body segments, legs, tiny claws of small crustaceans, and antennae are clearly visible. Some insects even retain egg clutches and the internal structure of their bodies. A magnifying glass is sufficient to fully appreciate such fine details, but they are also visible to the naked eye. The silhouettes of mayflies with their triple tails are slightly less distinct on the stone slabs. On some specimens, the outlines of small fish can be seen among the numerous crustaceans.

— Locations where creatures that lived for tens or hundreds of millions of years have been preserved in ideal conditions and in wide diversity are called lagerstätt. For paleontologists, these are real treasure troves. There are several of them in Transbaikalia, and we worked at these locations. It should be noted that the lakes themselves are no longer preserved; we are working with the fossilized sediments of these paleolakes. In one such ancient reservoir, a large variety of fish was preserved in abundance, while in another, for some reason, they were not found, but many shieldfish and insects were found. To ensure such preservation for living beings and “preserve” them for many tens of millions of years, a number of conditions must be met. The animal must end up on the muddy bottom of the reservoir in an oxygen-free environment. An important condition is the absence of predators or scavengers who would eat the remains of a dead animal. In these places there should be no currents or other hydrodynamics that could disrupt the integrity of the remains. In addition, they should be gradually covered with sediment to protect them from adverse environmental influences. It is in such places that today one can study the ecology, paleobiology, food chains, and lifestyle of the lake inhabitants of the Mesozoic. Lagerstätts are also valuable because such unique specimens, which are presented in our exhibition, can be found by paleontologists without much difficulty, whereas at ordinary excavation sites the search for ancient creatures is a rather labor-intensive, lengthy task and does not guarantee success. The number of exhibits on our new showcase will be replenished, as we plan to continue to participate in excavations in the Transbaikal region,” said Vsevolod Efremenko.

The exhibition dedicated to the continental flora and fauna of the Mesozoic was recently supplemented by an installation of fragments of fossilized tree trunks. It aims to reflect the Mesozoic era as the kingdom of gymnosperms, which then reached its peak of biodiversity and distribution. Modern conifers are a well-known example of such plants. However, by the mid-Cretaceous, the first flowering plants appeared, which, by geological standards, began to displace their competitors quite quickly. Therefore, the diet of herbivorous dinosaurs at the end of the Cretaceous was already radically different from that of their Jurassic predecessors.

"When assembling the installation, we used more ancient, late Paleozoic fragments of fossilized cordaite trunks (Cordaitales) from Kuzbass, approximately 300 million years old, as the Evolution of the Earth Research Center has accumulated a large number of similar specimens, collected over the years by staff from the Geological and Geophysical Faculty of NSU. Cordaites are also gymnosperms, specifically primitive conifers. These were mighty trees, as tall as modern pines and cedars, but with large, lanceolate leaves that were shed seasonally," explained Alexander Igolnikov, head of the Evolution of the Earth Research Center.

Material prepared by: Elena Panfilo, NSU press service

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

Novosibirsk scientists have developed a nanotube-based concentrate for creating "smart" silicone rubber.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

Novosibirsk, October 28, 2025: Researchers at the National Technology Initiative (NTI) Competence Center for Modeling and Development of New Functional Materials with Predetermined Properties (CNFM) at NSU have developed a concentrate based on multi-walled carbon nanotubes (MWCNTs) that can improve the properties of silicone rubbers. This new solution opens up potential applications in a wide range of industries, from medicine to oil and gas production. The development was funded by the National Technology Initiative Foundation.

"We've filed a Russian patent application for the invention 'concentrate composition and method for producing it.' This material is used to modify silicones, both low- and high-viscosity. It increases strength and imparts electrically conductive properties to the material, which were previously difficult to achieve," explained Andrey Skuratov, a research fellow at the NSU Center for Scientific Physics and Mathematics. Silicone rubbers are widely used in industry and medicine: they are used to make O-rings, gaskets, metal coatings, conveyor belts, and medical equipment components.

Standard methods for introducing nanotubes into silicone do not produce the desired results. According to researchers, simply adding nanotube powder to the material causes it to lose its properties, degrade more quickly, and the claimed antistatic properties are not realized. The NSU Center for Scientific Physics and Microphysics team proposed a fundamentally different approach: the nanotubes are pre-treated and distributed throughout the concentrate. This prevents the formation of agglomerates and evenly integrates them into the silicone structure.

"We use a special method in which the nanotubes are 'untangled' and dispersed. The result is a working product—a concentrate. Using this nanotube concentrate can be easily integrated into the silicone rubber manufacturing process without changing it, making our development convenient for industrial applications," explained Andrey Skuratov.

One of the key advantages of the new materials is the ability to finely tune their electrical conductivity by adjusting the concentration of MWCNTs in the silicone matrix. The effective range of nanotube content is from 0.2 to 0.8% by weight, enabling the production of materials with tailored electrical characteristics without compromising their elasticity or strength. This approach allows for tailoring the material to specific application requirements, from antistatic to conductive properties. This is particularly important in medicine, as static electricity can attract dust and contaminate the surface of products. In the oil, gas, and mining industries, controlled electrical conductivity provides an antistatic effect, preventing sparking and improving equipment safety. Furthermore, the introduction of MWCNTs significantly increases the mechanical strength of silicone: the developers were able to increase the elastic modulus and tear resistance by 25–35%. As a result, the products become more durable and more resistant to mechanical stress, including friction and contact with metal surfaces.

The developed nanotube-based concentrate paves the way for the creation of so-called "smart" silicone materials with tailored properties. These materials can be used to manufacture components for the automotive, space, and mining industries, as well as medical equipment and conveyor systems.

"We were able to not only confirm the improvement in physical properties but also demonstrate that the material becomes functionally flexible. It can be used to adjust its electrical properties to meet customer needs. This opens up a wide range of applications," the scientist noted.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

A development by NSU scientists will speed up the search for the most effective cancer drugs

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

Russian scientists have developed a new combined approach aimed at identifying the binding sites of drugs used in photodynamic oncotherapy with the protein responsible for drug transport in the human body. This approach will accelerate the search for the most effective cancer drugs and minimize side effects on patients. This study was conducted by a team of scientists from Novosibirsk State University, the International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, and staff from the Russian Technological University MIREA.

The results of the study were published in Journal of the American Chemical SocietyThe mere fact of publication in such a prestigious and highly cited journal is already considered a success for young researchers, and this article was accepted for publication in the "Editor's Choice" section, demonstrating the recognition of the research by the international professional community. The publication's lead author, Mikhail Kolokolov, a second-year graduate student in the Department of Chemical and Biological Physics at the NSU Physics Faculty and a junior researcher at the Electron Paramagnetic Resonance Laboratory of the International Tomography Center, received the prestigious youth award from the International Society for EPR Spectroscopy for best scientific paper. The young scientist conducted his research with fourth-year graduate student Natalia Sannikova from the same department, under the supervision of Olesya Krumkacheva, Doctor of Physical and Mathematical Sciences.

When medications enter the human body, they primarily bind to proteins in the blood. The effectiveness of a particular drug depends on its binding to serum albumin, a protein found in blood plasma responsible for transporting substances within the body. The degree of binding to this protein significantly influences the drug's action. If binding is too strong, the drug's concentration in the blood will be reduced, while if binding is weak, the drug may be unevenly distributed throughout the body or even destroyed without achieving its intended effect.

“To create an effective drug and control its binding to the transport protein, it is important to know where on the protein its molecules will attach. Identifying such sites will lead to understanding the mechanism of action of drugs, predicting side effects and identifying the causes of drug resistance in some patients. However, traditional methods of structural biology are not effective enough if there are several binding sites or the interaction of the drug with the protein surface is unstable. Then researchers use the molecular modeling method, but its results are not enough, since drugs often bind to the protein in several places. Thus, several small drug molecules can be attached to one protein simultaneously and at different sites. Thus, many variants of the structure of such complexes are obtained, which becomes difficult to take into account by molecular modeling. We proposed our own combined approach that allows us to measure the distance between various elements of the complex and use them to obtain its structure. Previously used methods produce average values, but in our case it is possible to achieve atomic precision in measuring the distribution of distances between binding sites, “see” all possible conformations (that is, the spatial arrangements of atoms in a molecule of a certain configuration) and find places where small molecules of a substance bind to a protein. This is the most important element of our work. In our approach, we measure distances within the complex using spin labels. A special small molecule containing an unpaired spin is selectively introduced into a region of the protein that we know. After binding the protein to the drug, we can measure the spin-spin distances between the spin label and the drug molecules on the protein,” explained Mikhail Kolokolov.

In their approach, the scientists combined molecular modeling methods with experimental data obtained using electron paramagnetic resonance, which allows the structure of compounds to be determined based on their microwave absorption. They first identified potential drug-protein binding sites using calculations, then conducted EPR spectroscopy studies, and then applied the experimental results and computer calculations to refine the configuration of these sites. This work was carried out by Mikhail Kolokolov and Natalia Sannikova, graduate students from the NSU Physics Department and junior research fellows at the EPR Laboratory of the International Tomography Center. It was discovered that binding for various types of photosensitizers can occur at non-standard sites on albumin and at several sites simultaneously.

"In theory, you can even determine where a molecule binds to a protein without any experiments, simply using computational methods. However, in practice, it turns out that these methods lead to significant inaccuracies and even errors because the calculation algorithms are relatively simplified. For this reason, scientists are often unsure of their results. Furthermore, computational methods can yield several possible binding sites and their locations. And often, from a calculation standpoint, these options are equally likely. The question is which one is correct. For this reason, the computational method is not precise enough and should not be relied upon entirely. However, it is still useful because it provides direction for experimental research, allowing us to narrow the range of possible binding sites. Thanks to this, we can use our experimental distances, which we are confident in, along with the computational methods, to determine the presence of a molecule on a protein with sufficient accuracy," explained Mikhail Kolokolov.

The scientists tested their combined approach by studying the binding of albumin to photosensitizers.

Photosensitizers are natural or synthetic substances that are used in medicine, for example in photodynamic therapy (PDT), where they accumulate in pathological cells and are activated when irradiated with light, causing their death.

Photodynamic oncotherapy is considered a very promising method because, unlike traditional chemotherapy, it targets only the tumors that are exposed to light. However, this cancer treatment method is currently not widely used due to the imperfections of photosensitizers. Scientists are faced with the challenge of improving their light absorption, diffusion throughout the body, and accumulation in tumors. This study of the albumin-binding sites of photosensitizers is important for further improving their diffusion throughout the body and increasing their concentration in tumors, which will contribute to increased therapeutic efficacy. Therefore, work in this area has significant clinical significance.

Scientists have identified the locations of binding sites for seven compounds whose structural interactions with albumin were previously unclear. The new approach demonstrated that binding can occur at non-standard sites on albumin and at multiple sites simultaneously for different types of photosensitizers.

The scientists tested the effectiveness of their combined approach using several photosensitizers. To demonstrate different binding mechanisms, they used compounds whose molecules had different electrical charges—negative, positive, and neutral. It turned out that, depending on this charge, they bind differently to the protein, which in this case was negatively charged. Molecules with a positive or neutral charge "sit" on the negatively charged surface of the protein and form an unstable bond—they can temporarily detach and reattach.

Negatively charged molecules behave differently—they penetrate pockets on the protein surface and remain there stably. However, in this case, their size plays a key role. Relatively small molecules fit completely into these pockets and formed very effective binding, while larger molecules behave differently.

Experiments have shown that the smaller the molecule and the more completely it fits into these pockets, the higher the site population. Experiments with larger molecules that fit less freely into these pockets yield lower populations and less effective binding. The researchers observed these processes directly in experiments. This molecular behavior is logical, but computational methods don't account for it. While they can determine how a molecule binds to a protein, they don't determine how this affects the protein itself. If small molecules fit freely into the pocket, no significant changes occur. However, large molecules can alter the protein structure. Computational methods often don't capture this, but the researchers corrected these errors and inaccuracies through experiments.

"Throughout all our experiments in this study, we demonstrated with atomic precision where the molecules of these compounds bind to albumin, which is undoubtedly a novelty in terms of photostabilizer development. The combined approach we developed will make the analysis of anticancer compounds significantly more accurate, and the development of new oncotherapy drugs simpler and faster. By combining computer analysis and electron paramagnetic resonance data, we were able to significantly reduce the number of labor-intensive calculations and experiments, simplifying the determination of interactions between albumin and photosensitizers. We believe our work will enable us to predict the most promising compounds for photodynamic anticancer therapy. We now plan to apply our approach to study how photosensitizers bind to DNA molecules," explained Mikhail Kolokolov.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

The 3rd Scientific and Production Forum "Golden Valley" will be held at Novosibirsk State University on November 13–14, 2025.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

On November 13–14, Novosibirsk State University will host the 3rd Scientific and Industrial Forum "Golden Valley 2025"—a key event in Siberia, bringing together representatives of science, industry, high-tech companies, and government agencies.

The organizer is Novosibirsk State University. Forum partners include the Siberian Branch of the Russian Academy of Sciences, the Council of Rectors of the Novosibirsk Region, the Business Club of Enterprise Managers "Commonwealth. Efficiency. Development" (SER), the NSU Alumni Association, and the Technopark of the Novosibirsk Academgorodok. The forum is supported by the Government of the Novosibirsk Region. Mikhail Fedoruk, Rector of NSU and Academician of the Russian Academy of Sciences, commented on the significance of the event:

NSU's development strategy is a transition to a scientific and technological university model, where education, research, and technology work together. It's important for us to collaborate with leading companies to develop products and solutions that are effectively implemented in industry. The Golden Valley Forum is an excellent platform for lively dialogue, new ideas, and projects that bring together science and business. The goal of the forum is to facilitate interaction between scientific organizations and industrial partners to achieve national technological leadership.

Key objectives include forecasting the development of leading economic sectors, the urban environment, and medicine; proposing multi-level technological solutions; and discussing specific challenges facing the industry and ways to address them.

The 2025 program covers the following areas: aviation and unmanned systems, microelectronics, energy, artificial intelligence, medicine and pharmaceuticals, and smart city technologies.

The forum will showcase AI tools with practical applications in industry and urban environments. Experts from academia and industry will share forecasts for key industries. An exhibition of achievements will showcase developments tailored to the needs of industrial partners. Participants will enjoy forecast sessions with leading experts, a strategic discussion on generative AI in the public sector, thematic sections, and a university-business networking platform. Additionally, NSU laboratories will open, a display of new developments will be on display, pitch sessions will be held, and there will be meetings to find partners. The forum will conclude with the signing of cooperation agreements.

Alexander Lyulko, Director of the Center for Interaction with Government Authorities and Industrial Partners at NSU, noted:

Today, Zolotaya Dolina is one of the largest forums in the region and the largest in Akademgorodok. Its mission is to establish direct dialogue between science and industry. It is here that joint solutions are born that set economic priorities. This year, we are focusing on breakthrough technologies—from artificial intelligence to microelectronics. Russia is on the threshold of a technological revolution, and our goal is to be among the leaders in it.

In three years, Zolotaya Dolina has become a key point of attraction for those working at the intersection of science and industry.

● In 2023, NSU signed agreements with the Botlikh Radio Plant, the Siberian Generating Company, and Renewal.● In 2024, new agreements were signed with the Federal Autonomous Institution SibNIA named after S.A. Chaplygin, Aviaspetstest JSC, and the Sibsteklo enterprise, and the Association of Developers and Manufacturers of Unmanned Systems was created.

These steps have led to the launch of joint laboratories and new research projects. Even larger agreements in the fields of artificial intelligence and high-tech manufacturing are expected in 2025.

More information and registration for the forum:http://zd.nsu.ru/ 

Venue: New Building of NSU Streaming Audiences (Novosibirsk, Akademgorodok, Pirogov Street, 3).

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

NSU scientists have performed the first tomographic scan of defective mammoth tusks in Russia.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

Scientists from the Laboratory of Nuclear and Innovative Medicine (LNIM) have begun a tomographic study of three mammoth tusks provided for study by the Department of Mammoth Fauna Studies of the Academy of Sciences of the Republic of Sakha (Yakutia). Faculty of Physics of Novosibirsk State UniversityThe next step will be radiocarbon dating of these artifacts, which will be carried out in NSU-NSC Accelerator Mass Spectrometry Center as part of the project Institute of Medicine and Medical Technologies The Priority 2030 program is currently underway. The objects of study—three mammoth tusks with various defects—were discovered several years ago in the Abyisky District, on the Tirekhtyakh and Badyarikha rivers in the Sakha Republic (Yakutia). Now, using high-tech research methods, scientists will determine the cause of the pathologies, determine the age of these paleontological finds, and identify the diet, geographic location, and migration patterns of these megafauna. The scientists claim that NSU has created optimal conditions for such research, housing the only low-voltage accelerator mass spectrometer in Russia and the only CT scanner in Siberia certified for animal studies and scientific research.

The scanned samples are mammoth tusks containing structural changes—significant deviations in shape and size, as well as abnormalities in tusk formation, clearly visible externally. The first sample clearly shows transverse "ring-shaped" constrictions of varying severity, indicating slowed or stagnant tusk growth. The second sample contains areas of nodular or irregular dentin growth. The third sample is very different from the previous ones, both in size—it is significantly smaller than normal-sized tusks—and in structure: the central portion of its cross-section differs from that normal for woolly mammoths; the dentin appears excessively dense and does not form the characteristic concentric layers. Furthermore, these samples also exhibit other types of pathologies not yet described in the scientific literature.

"Until now, there has been virtually no study of mammoth tusk pathologies worldwide. In Russia, only a few papers have been published comparing isotopic ratios in diseased and healthy tusks, and elemental analysis has been performed. At NSU, the work begins with studying the internal structure of diseased (aberrant) tusks, followed by an examination of the isotopic composition and the hereditary causes of such tusks. We chose NSU as a partner due to its highly qualified specialists in various fields and the availability of equipment. Such research is pioneering, and its importance is difficult to overestimate," commented Albert Vasilyevich Protopopov, Doctor of Biological Sciences and Head of the Mammoth Fauna Research Department at the Academy of Sciences of the Republic of Sakha (Yakutia).

In modern archaeology and paleontology, computed tomography (CT) has become an indispensable non-destructive method. For unique finds like the tusks from Yakutia, CT is a "digital scalpel," allowing one to peer inside the object and study its hidden structure without disturbing the original. The method provides a three-dimensional image of the external and internal structures, as well as information about the age, diet, and seasonal migrations of the animal. Its main value, however, lies in the detection of hidden pathologies that occurred during life, such as fractures, diseases, and injuries.

"The particular significance of our research lies in the combination of archaeology and preclinical veterinary diagnostic experience. A database of modern animal pathologies serves as a benchmark for interpreting injuries in fossil remains. By comparing the nature of the injuries, we can not only determine the probable cause of death of an individual but also reconstruct the environmental stresses experienced by the population—from competition for resources to climate change. This allows us to transform mammoth ivory into a detailed chronicle of its life and habitat," explains Vladimir Vladimirovich Kanygin, Head of the NSU Laboratory of Mammoth Illegibility and Evolution.

In the future, they plan to compare CT images of mammoth and elephant tusks to determine their similarity. Moreover, the laboratory's conditions allow for the study of more than just the tusks and skeletal remains of these large animals. LYAIM scientists hope to receive a well-preserved permafrost carcass of a baby mammoth from their colleagues in Yakutia for study. To do this, they could first conduct individual CT scans of its parts and then assemble all the images into a 3D computer reconstruction, allowing the object to be studied from any perspective.

The analysis of CT images of mammoth tusks will be carried out by a team of scientists led by Andrey Yuryevich Letyagin, Deputy Director for Research at the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Deputy Head of the Institute of Clinical Experimental Lymphology for Research and Clinical Work, Doctor of Medical Sciences, Professor, and physician of the highest category in radiology. He is a leading expert at the Laboratory of Lymphatic Mechanics and Physics of the Faculty of Physics and Mammology of Novosibirsk State University. Together with other laboratory researchers, Andrey Yuryevich previously participated in the development of algorithms for the "Veterinarian Assistant" software module, designed to diagnose oncological diseases in domestic animals using CT images, and also participated in CT studies of archaeological finds conducted in the laboratory.

"We will be processing the CT images of the tusks' internal structure, paying attention to areas of destruction. We will certainly see some pathological changes of various origins, caused either by trauma or inflammatory degenerative processes. Much depends on the integrity of the bone structure, which we still need to determine, but one thing is clear: the work will be challenging due to the unusual nature of the objects being studied. Accessing the literature is practically impossible, as only a few articles on the topic exist to date. So, what we're seeing are CT images of objects that have never been studied before. We will have to develop our own protocol for conducting such studies within the technical capabilities we currently have," explained Andrey Yuryevich.

Computed tomography is only the initial stage of studying these unusual tusks. Scientists plan to conduct a comprehensive radiocarbon dating study, layer-by-layer analysis of isotopic and chemical composition, and histological analysis to determine the cause of the defects.

We want to know whether these abnormalities were the result of disease or environmental influences. It would be interesting to find any links between these pathologies and similar disorders in elephants, and even the possibility of their occurrence in humans. We suspect such a connection: mammoths became extinct at least several thousand years ago, yet the congenital defects and acquired diseases of modern elephants bear some similarities to those seen in these megafauna, which share a common ancestor with elephants. We would like to examine the situation from the perspective of disease evolution and assess how dental diseases change under the influence of various factors. Therefore, we have sent a request to zoologists and veterinarians involved in the study and treatment of elephants in India (the Center for Environmental Studies, Bangalore) and Thailand (the Center for Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University) for the possibility of consultation. "Our Indian colleague has already responded and expressed great interest in working together," said Ekaterina Vasilyevna Parkhomchuk, Director of the NSU-NSC Accelerator Mass Spectrometry Center.

In the near future, the Isotope Research Laboratory of the Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences will conduct a layer-by-layer isotope analysis of all three tusks, while simultaneously preparing samples for dating. At the NSU-NSC Accelerator Mass Spectrometry Shared Use Center, the mammoths' lifespan will be determined using radiocarbon dating. Researchers will then study their elemental composition, which will reveal what the mammoths ate and how complete their diet was, the geographic locations they inhabited, and the directions they migrated. Using histological studies, the scientists hope to determine what diseases these megafauna suffered from, whether these diseases have disappeared in modern times or persist today, and whether they affect another, but surviving, lineage of elephants, a common ancestor of mammoths.

"We would be delighted to collaborate with researchers who possess other modern methods that allow us to approach the study of mammoth diseases. Until now, no one has seriously addressed this issue. Meanwhile, this is crucial in terms of contributing to the mammoth revival, which is no longer a fantasy but is becoming a reality. Our colleagues from Yakutia have established the World Mammoth Museum, where conditions are being created for the preservation and maximum prolongation of the life of all the unique specimens that are now being discovered as the permafrost melts," said Ekaterina Parkhomchuk.

Next, a histological examination of the tissues is planned. The NSU Laboratory of Nuclear and Innovative Medicine has modern, high-tech equipment that allows for ultrathin tissue sections to be prepared for microscopic examination using a digital scanner, which will yield a paleohistological data package in the form of electronic images.

"We plan to conduct microstructural paleontological research in collaboration with the Federal Research Center for Fundamental and Translational Medicine (FRC FTM) and my supervisor, Elena Koldysheva, Doctor of Biological Sciences and Head of the Laboratory of Molecular Mechanisms of Pathological Processes at the Federal Research Center for Fundamental and Translational Medicine (FRC FTM). This is the first time histological studies of paleontological specimens have been performed, and if the megafauna tissue staining is successful, we will digitize the resulting microscopic images. This will make them accessible to specialists from a number of scientific organizations involved in the project. Preserving the structure during analysis will allow us to identify damage caused during life: thermal and mechanical injuries, congenital pathologies, or diseases acquired during life and their consequences. It may also be possible to reconstruct the morphological composition of the mammoth organs whose tissues were analyzed," explained Nikolai Kanygin, Junior Researcher at the FRC FTM (Institute of Molecular Pathology and Pathomorphology).

Scientists involved in the study of defective mammoth tusks are confident that it is now crucial to develop and apply the maximum number of methods for studying megafauna specimens in order to obtain the maximum amount of information about the finds from Yakutia.

"Such samples, removed from permafrost layers, thaw and quickly deteriorate. Soft tissues decompose, and bones quickly dry out and turn to dust. As a result, we lose a great deal of important information that could shed light on the cause of the mammoths' extinction. There are two competing points of view: some scientists believe that these megafauna, and subsequently many other species, were exterminated by an expanding population of ancient humans, while others believe that a catastrophic event, triggering climate change 10,000-15,000 years ago, was to blame. On the other hand, the modern climate is still suitable for many extinct animal species, including mammoths. Our research on mammoth tusks will help solve these mysteries of the past," concluded Ekaterina Parkhomchuk.

Reference:

The Department of Mammoth Fauna Studies is a research unit of the Academy of Sciences of the Republic of Sakha (Yakutia). The department's objectives include studying the anatomical and morphological characteristics of mammoth fauna, their taxonomic status, and ecological adaptations. A second important area of research is paleoecological studies of the late Pleistocene in Yakutia, including vegetation, natural environments, and prevailing landscapes. A third area of research is studying the burial conditions of mammoth fauna specimens, including mammoth tusks, a valuable commercial resource for residents of Yakutia's Arctic regions.

In addition to these studies, which the department conducts independently, joint research projects are conducted with leading Russian and international scientific institutions. Genetic research plays an important role, involving, for example, staff from the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (A.S. Grafodatsky).

The department's projects involve numerous highly qualified specialists from various Russian institutes—Moscow, St. Petersburg, Novosibirsk, and Yekaterinburg. Many types of analyses are conducted abroad, at the most reputable genetic and isotope centers.

Material prepared by: Elena Panfilo, NSU press service

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

An NSU scientist has discovered the shortest possible pulse duration in fiber lasers.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

A practical method for achieving the shortest pulse duration in all-fiber lasers was developed by Sergei Kobtsev, Doctor of Physical and Mathematical Sciences and Head of the Department of Laser Physics and Innovative Technologies at Novosibirsk State University. The results of his work in this area were published in the article "Production of ultrashort pulses in fiber lasers" ("Obtaining ultrashort pulses in fiber lasers"). The article became one of the most downloaded publications of the journal "Journal of the Optical Society of America B" in July-September 2025. The research was conducted within the framework of the project "New fiber short-pulse laser systems incorporating advanced composite materials, intelligent technologies and metrological extensions," supported by the Ministry of Science and Higher Education of the Russian Federation.

Fiber lasers are a promising type of laser, distinguished by improved key user parameters—the elimination of the need for precise laser cavity tuning, effective natural heat dissipation, efficient generation, and compactness. However, producing ultrashort pulses in these lasers is a challenging task due to increased dispersion and nonlinearity, often requiring the use of bulk optical elements. Such elements significantly reduce the advantages of fiber (or solid fiber) lasers.

"Sometimes, fiber lasers are used to describe combined configurations containing only a minority of fiber components, while the majority of the optical elements are bulk. Such combined fiber-bulk lasers lose important advantages associated with solid-fiber lasers. Although such combined fiber-bulk lasers can produce pulses lasting a few femtoseconds, these configurations differ little from traditional solid-state bulk lasers with their inherent drawbacks. We were interested in the minimum pulse duration possible in solid-fiber lasers, especially with fixed polarization. It turned out that such lasers can generate pulses of picosecond duration and longer," explained Sergey Kobtsev.

The results of this work are of interest to a wide range of specialists using fiber components in research and development. The ability to generate picosecond light pulses in all-fiber lasers expands their applications while maintaining the advantages of this type of laser. Given the increasing prevalence of all-fiber lasers, their generation characteristics are of great interest.

"Fiber lasers are undergoing rapid development. A few years ago, it seemed that fiber lasers could replace all other laser types due to their significant advantages. However, numerous studies have shown that these advantages are inherent not to all fiber lasers (combined, etc.), but specifically to all-fiber lasers. It became interesting to determine at what pulse durations the all-fiber configuration could be combined with short pulses. A detailed study of the problem revealed a solution: starting with pulse durations in the picosecond range, they can be generated in all-fiber lasers with fixed polarization. The mechanism for generating ultrashort pulses is also important, but a fundamental solution has already been demonstrated," explained Sergey Kobtsev.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

The Romance of Archaeological Expeditions: "We Lived in a Greenhouse, from Which We Brought Out Seedlings, Snakes, and Bears"

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

The exhibition "Everyday Life and Romance of Archaeographic Expeditions (for the Anniversary of Archaeography in Siberia)" opened at NSU during the All-Russian scientific conference "Source Studies of Old Russian Literature and Language (Archaeography, Textual Criticism, Poetics)," which took place from October 16-18. It features photographs from various years and personal belongings of the participants of the early expeditions—from canvas jackets and sneakers, camping utensils and notebooks to ship tickets and early printed books.

Many participants at the exhibition's opening ceremony recognized themselves in old photographs and reminisced about trekking through the taiga, traveling to the expedition site by steamship, and being welcomed by the Old Believers in their settlements. And, of course, they spoke of their mentors and teachers. Many warm words were spoken about the founder of archaeographic expeditions, Elena Dergacheva-Skop. Grateful students remembered her as an energetic, thorough, and very cheerful woman, dedicated to science and passionate about her work. It was she who drew many of those present into the amazing world of ancient manuscripts, early printed and handwritten books, awakening in them the passion for scientific inquiry and the desire for new discoveries. Not all of them subsequently dedicated their careers to archaeography, but they did not abandon their scientific work and continued their research in other fields.

NSU Rector and RAS Academician Mikhail Fedoruk attended the exhibition opening. He noted the significant contribution of NSU Humanities Institute researchers to science and the significance of their expeditionary work. Then, Ekaterina Turuk, a research fellow at the NSU Humanities Institute's Laboratory of Archaeography and Source Studies, spoke about the exhibition and the most interesting exhibits on display.

This exhibition is dedicated to the 60th anniversary of archaeological expeditions to Siberia, the very date when Elena Ivanovna Dergacheva-Skop, Vladimir Nikolaevich Alekseev, and Elena Konstantinovna Romodanovskaya, a staff member of the Institute of History, Philology, and Philosophy of the Siberian Branch of the Russian Academy of Sciences, led our philology students on their first trip to the Siberian Old Believers. Since then, these expeditions have become regular events. We envisioned a slightly lyrical, romantic, and even homely feel to this exhibition, hence its title. It turned out that the personal belongings of the archaeological expedition participants represent the everyday life, while the photographs they provided provide the romantic touch. We are grateful to everyone who responded to our request and participated in the search for artifacts for our exhibition. Thanks to them, the exhibition features unique exhibits. "That's how we acquired Elena Ivanovna Dergacheva-Skop's handbag, which she used to carry the expedition participants' tickets, a whole box of Oleg Albertovich Donskikh's diaries, and photographs from his personal archive. And at our insistence, Andrei Yuryevich Borodikhin found the very jackets and backpack he used on the expeditions. He even managed to miraculously find his hiking shoes, mug, and kettle! He even shared a bear tooth, given to him by the Old Believers as a talisman. All these items can be seen at our exhibition," said Ekaterina Turuk.

A significant portion of the exhibition is made up of photographs. Archaeography Laboratory staff members Ekaterina Turuk, Inna Shilova, Grigory Belousov, and GI Master's student Anna Cherkasova have accomplished a significant amount of work, working with the photo archive. They classified and sorted the photographs, digitized the slides, and identified the people depicted in them. The result is an extensive photo gallery of expedition images, from the first to this year's. Looking at these images, the participants of the first expeditions reminisced about their student years and eagerly shared their memories with current humanities students.

In the 1960s, our lives were completely steeped in romanticism. Romance was the key word of our youth. We even dedicated our entrance essays to it, on a free topic, in which we wrote about our understanding of romance. So, for us, romance wasn't about waiting on the pier for a beautiful frigate with scarlet sails. We were enchanted by the romance of difficult journeys. For us, it was hiking, the taiga, scientific research, and overcoming difficulties. And there were plenty of them on expeditions! On our first expedition, Elena Ivanovna and I set off on a large motor ship called the "Maria Ulyanova" to the north of the Tomsk region. We disembarked in the village of Molchanovo, where we were put up in a large room. I think it was a hotel. And then we hit the taiga trails. I remember a funny incident: I was paralyzed with fear when I came across three snakes. So much so that I couldn't go any further. Elena Ivanovna asked a local we met to give me a ride in a cart to the pier. On the way, he asked me who we were. I proudly replied, "Philologists." He said, "Looking for oil? What, without a compass?" Indeed, many geologists worked in those areas, searching for minerals, and the locals were accustomed to encountering them in the taiga, shared Irina Alexandrovna Guzner.

A participant in the first archaeographic expedition recounted that Elena Ivanovna Dergacheva-Skop provided all the necessary living arrangements. She handled issues with accommodation, travel, and food. The latter presented some challenges. Canned goods and cereals were available in local stores, but eggs and milk had to be ordered from the state farm. Elena Ivanovna handled this task successfully.

"Our group was assigned two people for this purpose, and Elena Ivanovna was given a sarafan—a blue one with white polka dots. She would dress up, one girl would do her makeup, the other would do her hair, and then, dressed like that, she would go to the management, who couldn't resist the charm of a young, beautiful woman. So, we were given plenty of food, and we ate well," recalled Irina Alexandrovna Guzner.

The expedition's romance also lay in the unpredictability of events and overcoming difficulties in unfamiliar conditions. Irina Alexandrovna recalled how, in the village of Lysaya Gora, which no longer exists, they had to live in a greenhouse, from which they removed the seedlings and, as best they could, adapted them for temporary housing.

"Thanks to these expeditions, I suddenly discovered that another life is possible. It turned out that there are people who live for completely different values. And that was, of course, simply amazing," said Oleg Albertovich Donskikh.

At the photo exhibition, a photograph of a young girl with a long braid caught everyone's attention. Elena Edmundovna Voytishek recognized herself in the photo and shared a funny story from her expedition past.

It was 1980, in a remote village. I'd just finished my first year. In one of the houses, an Old Believer named Paramon Kalinovich approached me and tugged my braid: "Isn't that a towed braid, girl?" I was hurt and offended. But after my partner, fifth-year student Mikhail Chirkin, and I helped around the house, fetched water, weeded the garden beds, and talked about the harvest, they began to consider us one of their own and took our work on the expedition seriously. And then, frankly, it was a test worse than any we'd ever taken in university classrooms! They immediately laid out the Chetyi-Minei, the Hexameron, and the Psalter for us to read, no matter which page the book opened to. And we read. That's how our hosts tested us. Then they opened the books of Znamenny Chant for us, either by salts or by hooks. Here, my musical education really helped me—I had attended music school and played two instruments. Somehow, I managed, because I had to read the lyrics, sing them without the familiar staff, and discern those hooks. It was a wonderful experience, a kind of parallel reality. There are events in life that you experience and realize: you'll never see anything like this again, and you'll never relive that moment anywhere else. Our expeditions consisted of such moments," said Elena Edmundovna Voytishek.

Over the years, expedition participants brought back approximately 2,000 handwritten and early printed books from the 15th to early 20th centuries. Finding these precious artifacts wasn't always easy. Only persistence and dedication helped the expedition members achieve their goal.

— One of the participants in our expedition, Gennady Pavlovich Enin, worked for the family that kept this handwritten book of the 16th century in order to obtain the valuable Four Gospels with marvelous miniatures on a gold lining. For three years, every vacation she went to her owners and did various housework for them, so that she could later receive this book of extraordinary beauty for her labors. In the third year, the owners agreed to give it away, but also asked for a portable tape recorder – the family was very musical. Gennady Pavlovich was quite happy with this option. What about my story? I had the opportunity to visit a real Old Believer monastery once. Then I was still a student and went on a trip with a girl from Leningrad University. We were sent to the Asinovsky district of the Tomsk region. But how to find that very monastery? Having arrived at our destination, we went to the village administration. There we were advised to contact the foresters – they know exactly where this monastery is, and even go there from time to time, patrolling the forest. We went to the forestry enterprise. It turned out that the foresters were just getting ready to go in that direction the next morning. We stocked up on food and were already at the appointed place at 6 am. We walked for a long time through the taiga along an old overgrown clearing along which timber was transported 15 years ago. Well, we walk along this clearing for an hour, two, three… A short halt and again we hit the road. The foresters were surprised when they looked at us: they were city dwellers, and they didn’t complain or whine… At rest stops, they treated us to tea, and we shared our supplies with them. We reached the monastery in 10 hours. It wasn’t far there—“only” 40 kilometers. At the monastery we met an amazing person – Mother Melania. She lived in a tiny house. Several other people lived in the large house next door, and real treasures were kept here – old books. She told me about her difficult fate, about the persecution of Old Believers, about life in the taiga, about a recent meeting with a bear at the fence separating the estate from the taiga. Such moments are not forgotten, and they can only be experienced on an expedition,” said Tatyana Nikolaevna Apsit.

The romance of expeditions hasn't gone away, and today more and more students from the NSU Humanities Institute are embarking on office-based practical training, which is part of the Philology curriculum and mandatory for all students.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

The NSU Center for Artificial Intelligence developed and tested a draft state standard, "Humanitarian Expertise on the Implementation of AI Systems in Smart City Development Practices."

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

Novosibirsk, October 20, 2025: The NSU Research Center for Artificial Intelligence (AI Center) has developed a draft state standard, "Humanities-Based Assessment of the Implementation of AI Systems in Smart City Development Practices." An application has already been submitted to Technical Committee No. 164 "Artificial Intelligence." If approved, it will be part of a comprehensive assessment of AI-based solutions. This state standard will be the first regulatory document in international practice to take into account the humanities component of AI projects.

"Currently, artificial intelligence projects are presented as engineering or technical systems with various functionalities, and developers focus on the effectiveness of the solutions, programs, and models they create. However, the anthropology of the project is largely ignored in these developments. This is especially true when it comes to what will happen to a person, their abilities, health, moral principles, values, and meanings if this project is widely implemented into the structures of our everyday life, such as education, science, management, and healthcare. Therefore, the need has arisen for so-called humanitarian expertise, which involves assessing the humanitarian risks and opportunities that arise from the widespread implementation of these developments," said Sergei Smirnov, PhD, a leading researcher at the NSU AI Center, one of its authors, about the idea behind the standard.

The smart city theme for the new state standard was chosen based on the NSU AI Center's specialization, "Construction and Urban Environment." Existing state standards, including those in the field of artificial intelligence, were used as a model. Currently, there are over a hundred such standards, either approved or still under discussion.

"We also drew on a long-standing theoretical tradition and the experience of implementing ethical review in biotechnology, medicine, healthcare, and genetics, where this issue became particularly pressing when the issue of human cloning and genome editing arose. We took these developments and applied them to the field of artificial intelligence," added Sergey Smirnov.

As part of the humanitarian assessment, a questionnaire was developed to assess the humanitarian potential (opportunities) and humanitarian risks of implementing an AI system. The questionnaire includes several questions covering various aspects related to the impact of the AI project being developed on the urban environment: does the project help solve a social or humanitarian problem? does the manager's approach change? does the comfort of the living environment, safety, and health of citizens change, and if so, in what ways? is the user expected to be actively involved as an active subject during implementation, or are they passive consumers? does trust in the system increase, or does mistrust arise? does the project's implementation generate conflicts? The questionnaire takes into account various perspectives—residents, the target professional group (service users), city government representatives, investors, experts, and the developers themselves. Each item is assessed on a ten-point scale. All responses are summed up, and an aggregated indicator is derived separately for humanitarian risks and humanitarian potential.

When calculating the aggregated indicator within the humanitarian assessment, two other important criteria are also taken into account. This is the Smart Cities Index, implemented by the Russian Ministry of Construction and Housing and Communities, which considers the competitiveness of Russian cities, the development of an effective urban management system, and the creation of safe and comfortable living conditions for residents. The second is the Urban Environment Quality Index, approved by the Russian Government, which assesses the living conditions of citizens in cities based on various spaces (housing, street and road networks, green spaces, public and business infrastructure, etc.) across a number of criteria (safety, diversity, comfort, etc.).

The resulting indices of humanitarian risk and humanitarian potential, smart city, and urban environmental quality are summed to produce an aggregated indicator—the humanitarian index—that measures the consequences of implementing a specific artificial intelligence project and its impact on people. A formula for calculating the humanitarian index was developed to calculate this index.

A pilot test of the developed state standard took place in August 2025 at the Technoprom international forum for technological development, where a project-based simulator on humanitarian assessment was conducted. Two projects from the NSU AI Center were used for evaluation: "Environmental Monitoring in a Smart City" and "Energy and Distribution Networks of a Smart City. Digital Heating Network." Following the event, the initial questionnaire was adjusted, and it became clear that the draft state standard is a viable tool that developers could use when designing their own solutions to improve and strengthen these projects, as it takes into account the humanitarian aspect.

"The institution (practice) of humanitarian expertise should be incorporated into municipal government regulations. Humanitarian expertise should become as mandatory as, for example, environmental assessments in chemical production, and should become the norm when deciding on the implementation of any AI-based service," emphasized Sergey Smirnov.

The current goal is to test the newly created state standard as widely as possible, conduct dozens of different simulations with real projects, and test both the projects themselves and the assessment tool. A draft law on AI is currently being developed at the federal level. According to Sergei Smirnov, the state standard for humanities assessment could very well become part of it.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

An NSU astronomer captured the second brightest comet of this autumn.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

Mikhail Maslov, an engineer at the Vega Observatory at Novosibirsk State University, captured the second-brightest comet to date, C/2025 R2 SWAN. The footage was taken in the Iskitim district of the Novosibirsk region. The comet currently hangs low on the horizon in the evenings.

"This is a recently discovered comet, currently the second brightest after C/2015 A6 Lemmon. Previously visible in the Southern Hemisphere, it's now moving into the Northern Hemisphere, but still low in altitude. It will be visible in telescopes and binoculars in the evenings over the next three weeks," said Mikhail Maslov.

It probably had not been in the Solar System before, since its orbit is weakly hyperbolic, that is, open and non-periodic.

“This comet will fly through the inner regions of the solar system once and, most likely, will not return,” added Mikhail Maslov.

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.

A master's student from the Physics Department of NSU won the young scientists' competition at the OpenBio forum in the biophysics section.

Translation. Region: Russian Federation –

Source: Novosibirsk State University –

An important disclaimer is at the bottom of this article.

The 12th OpenBio Biotechnology Forum, held in late September, brought together 992 in-person and 4,411 online participants from 13 countries in the science city of Koltsovo. Representatives from businesses, scientific institutes, and research centers met at the forum to discuss the development of biotechnology, biopharmaceuticals, and related fields.

One of the participants was Sergey Dementyev, a second-year master's student at the NSU Physics Department. Sergey presented an oral presentation, "Functional Properties of Spin Trapping Agents for Enhanced Detection of Singlet Oxygen in Photodynamic Therapy Applications," in the biophysics section and won first place among young scientists under 35. As a prize, he received a certificate for training in "Machine Learning in Biology and Bioinformatics."

"I'm interested in the forum as a platform for science and business to build practical partnerships. I'm particularly interested in collaborating with pharmaceutical companies on joint drug testing projects," Sergey said.

The research presented by Sergey was conducted in collaboration with the Laboratory of Nitrogen Compounds at the Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences. The work focuses on the discovery and study of new spin traps—compounds that enable more accurate detection of singlet oxygen in biological systems.

"Our proposed trap demonstrated the best performance and proved to be the most promising for these applications. This result is important for studying the in vivo antitumor properties of photosensitizers used in photodynamic cancer therapy," explains Sergey.

Photodynamic therapy is a non-invasive cancer treatment method already widely used in clinical practice. The search for new photosensitizers is a key step in improving its effectiveness.

“The compound we proposed makes it possible, for the first time, to conduct more in-depth studies of these drugs under physiological conditions—both in vitro and in vivo—compared to the standard testing procedure on mice,” the researcher notes.

Work on the project was carried out in the Electron Paramagnetic Resonance Spectroscopy Laboratory of the International Tomography Center of the Siberian Branch of the Russian Academy of Sciences under the supervision of Doctor of Physical and Mathematical Sciences Olesya Anatolyevna Krumkacheva.

"The most challenging and, at the same time, interesting part was mastering and combining several experimental techniques necessary for the project's implementation. In the future, we plan to use the developed traps to study new promising photosensitizers synthesized by our colleagues," added Sergey.

The material was prepared by: Yulia Dankova, NSU press service

Please note: This information is raw content obtained directly from the source. It represents an accurate account of the source's assertions and does not necessarily reflect the position of MIL-OSI or its clients.